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Institute of Physics, Academy of Sciences of the Czech Republic, Na Slovance 2, 18221 Praha 8, Czech Republic

Received 6 January 2003 / Received in final form 10 June 2003
Published online 22 September 2003 – c© EDP Sciences, Società Italiana di Fisica, Springer-Verlag 2003

Abstract. We study noninteracting quantum charged particles (electron gas) subject to a strong random
potential and perturbed by a weak classical electromagnetic field. We examine consequences of gauge
invariance and charge conservation in the space of Bloch waves. We use two specific forms of the Ward
identity between the one- and two-particle averaged Green functions to establish exact relations between the
density and current response functions. In particular, we find precise conditions under which we can extract
the current-current from the density-density correlation functions and vice versa. We use these results to
prove a formula relating the density response and the electrical conductivity in strongly disordered systems.
We introduce quantum diffusion as a response function that reduces to the diffusion constant in the static
limit. We then derive Fick’s law, a quantum version of the Einstein relation and prove the existence of the
diffusion pole in the quasistatic limit of the zero-temperature electron-hole correlation function. We show
that the electrical conductivity controls the long-range spatial fluctuations of the electron-hole correlation
function only in the static limit.

PACS. 72.10.Bg General formulation of transport theory – 72.15.Eb Electrical and thermal conduction
in crystalline metals and alloys – 72.15.Qm Scattering mechanisms and Kondo effect

1 Introduction

Low-energy physics of equilibrium systems with weakly
interacting electrons is well understood both qualitatively
and quantitatively. The relevant information about the
equilibrium system is contained in one- and two-particle
Green functions, in particular in their behavior near the
Fermi energy. A number of reliable approximate methods
have been developed for the calculation of these func-
tions. Among them, systematic renormalized perturbation
expansions based on the many-body Feynman diagram-
matic technique have proved most effective. When impu-
rities or quenched configurational randomness are added
we are still able to describe equilibrium properties of
such systems quite reliably within diagrammatic schemes
and a mean-field-type coherent-potential approximation
(CPA) [1].

The situation gets less straightforward if we come out
of equilibrium. This is the case when the system is dis-
turbed by a time-dependent external force but does not
manage to reach a new equilibrium within the relaxation
times of the experimental setup. We then have to deter-
mine the response of the system to the external perturba-
tion in order to obtain experimentally relevant data. We
do not have at our disposal many established methods
to calculate response functions. When the perturbation
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is weak, which is the most common situation in prac-
tice, we can use the linear response theory to calculate
effectively the response functions [2]. A fundamental tool
for the calculation of the response functions within the
linear-response theory is the Kubo formalism [3]. It de-
termines how the response functions can be expressed in
terms of two-particle Green (correlation) functions that
are characteristics of the equilibrium state. Kubo formu-
las are means for the description of weakly nonequilib-
rium systems with equilibrium functions. Unlike the re-
sponse functions, the equilibrium Green functions obey
equations of motion and are suitable for developing sys-
tematic approximations within many-body diagrammatic
techniques.

Kubo formalism, however, provides independent repre-
sentations for different response functions that we have to
approximate separately. The problem emerges with cal-
culating different response functions via different Kubo
formulas. We are generally unable to keep exact relations
between response functions that may hold due to special
symmetries of the system under investigation. The most
pronounced case with “hidden” symmetries is the response
to a weak electromagnetic perturbation where we have
to satisfy gauge invariance together with charge and cur-
rent conservations. Instantaneous field-dependent devia-
tions of charge and current densities from their equilib-
rium values are described by density and current response
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functions. Within the linear-response theory these func-
tions are obtained from Kubo formulas with density-
density and current-current correlation functions, respec-
tively. Although both correlation functions are derived
from the same two-particle Green function, they are nor-
mally approximated independently according to the pur-
pose they serve to.

When quantum coherence is negligible we can calcu-
late transport properties from the coherent-potential ap-
proximation [1]. There is no contribution to the homo-
geneous current-current correlation function beyond the
single electron-hole bubble in the single-band coherent-
potential approximation [4]. Hence, most theories beyond
the CPA, either on a model or a realistic level, use the
Kubo formula for the electrical conductivity with the
current-current correlation function to determine trans-
port properties of disordered solids [5,6].

On the other hand, when quantum coherence ef-
fects are substantial and we expect the Anderson metal-
insulator transition, the electrical conductivity is usually
calculated from the electron-hole correlation function with
the aid of the diffusion constant controlling its low-energy
behavior near the diffusion pole [7,8]. The diffusion pole
is crucial for scaling arguments and the renormalization
group approach to Anderson localization [9].

There is a number of more or less heuristic arguments
in the literature that relate the density response with
the conductivity [10]. They are essentially derived from a
semiclassical or equilibrium description of an electron gas
exposed to an electromagnetic field. In weakly disordered
quantum systems (described by continuum models) a re-
lation between the density response and the conductivity
can formally be derived as follows [10]. Gauge invariance
is used to relate the external scalar potential with the elec-
tric field E = −∇ϕ. The current density generated by the
external field then is

j(q, ω) = σ(q, ω) ·E(q, ω) = −iσ(q, ω) · q ϕ(q, ω) (1)

where σ(q, ω) denotes the tensor of the electrical conduc-
tivity. Charge conservation is expressed by a continuity
equation. In equilibrium we can use its operator form be-
ing a consequence of Heisenberg equations of motion for
the current and density operators. For Hamiltonians with
quadratic dispersion relations we have

e∂tn̂(x, t) + ∇ · ĵ(x, t) = 0. (2)

Energy-momentum representation of the continuity equa-
tion in the ground-state solution is

−iωeδn(q, ω) + iq · j(q, ω) = 0. (3)

We have to use a density variation of the equilibrium
density, i.e., the externally induced density δn(q, ω) =
n(q, ω)−n0 in the continuity equation with averaged val-
ues of operators.

From the above equations and within the linear re-
sponse δn(q, ω) = −eχ(q, ω)ϕ(q, ω) we obtain in the
isotropic case

σ(q, ω) =
−ie2ω

q2
χ(q, ω). (4)

The derived equality formally holds for complex functions
without restrictions on momenta or frequencies. Frequen-
cies can, in principle, be even complex. Relation (4) is
often taken as granted for quantum systems in the whole
range of the disorder strength and is used for the defini-
tion of the zero-temperature conductivity when describing
the Anderson localization transition [7,8].

Although the above derivation of equation (4) may
seem very general it suffers from a number of flaws. First,
the operator continuity equation (2) cannot be directly
used out of equilibrium. The nonequilibrium density and
current operators no longer obey Heisenberg equations of
motion with the perturbed Hamiltonian. The perturba-
tion is decoupled from the equilibrium Hamiltonian and
is treated in the linear-response theory only to linear
order. Moreover, the conservation laws must be proved
in the representation space of quantum states and for
Green functions to be applicable for the response func-
tions. We then need to prove completeness of the repre-
sentation space and validity of the respective Ward identi-
ties. Second, strongly disordered electron systems can be
described only by lattice models with nonquadratic dis-
persion relations. Continuity equation (2) is then to be
modified beyond the hydrodynamic limit even in equilib-
rium. Hence, the above derivation of equation (4) cannot
be fully trusted in quantitative studies of strongly dis-
ordered quantum systems with nonquadratic dispersion
relations.

There is presently no reliable theory of strongly disor-
dered electrons beyond the mean-field CPA. Since mean-
field approximations do not include vertex corrections to
the electrical conductivity, they are unsuitable for the in-
vestigation of localization effects in three spatial dimen-
sions. Unlike low dimensions (d ≤ 2), Anderson local-
ization in d = 3 may occur only in strongly disordered
systems. Anderson localization in bulk systems has not
yet been understood or quantitatively described in a sat-
isfactory manner. Its quantitative description demands
bridging the gap between the mean-field (CPA) trans-
port theory and theories for weakly and strongly local-
ized electron states. It is clear that such an interpolating
scheme should be based on advanced approximations for
two-particle functions.

Recently, a diagrammatic method for summations of
classes of two-particle diagrams has been proposed [11].
This theory has a potential to interpolate between the
mean-field and localization theories provided exact rela-
tions between the density and current response functions
have been established. Criteria for validity of relations be-
tween the density-density and the current-current correla-
tion functions in approximate treatments of strongly dis-
ordered systems have not yet been set. When going beyond
the CPA we have to establish such relations in the metal-
lic regime of tight-binding models with extended electron
states. Simultaneously, we have to formulate conditions
under which the derived relations hold or may be broken.

The aim of this paper is threefold. First, we derive
various relations between current-current, current-density,
and density-density correlation functions for strongly
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χ(q, ω + i0+) =
1

N2

∑
kk′

∫ ∞

−∞

dE

2πi

{
[f(E + ω)− f(E)] GAR

kk′ (E,E + ω;q)

+ f(E)GRR
kk′(E, E + ω;q)− f(E + ω)GAA

kk′(E, E + ω;q)
}

. (10)

disordered electrons described by Bloch waves. Second, we
articulate conditions under which these relations hold or
to which extent they may be broken in quantitative treat-
ments. We show how the conductivity can be calculated
in the hydrodynamic limit from the density response func-
tion and vice versa. Third, we introduce a generalization
of diffusion via a quantum response function and derive a
dynamical generalization of the Einstein relation between
the diffusion constant and the electrical conductivity. We
relate quantum diffusion with its classical counterpart and
show that the long-range fluctuations of the electron-hole
correlation function are controlled by the diffusion con-
stant only in the static limit.

To reach this goal we use the Kubo formalism and av-
eraged many-body Green functions in the space of Bloch
waves. A weaker form of the continuity equation expressed
in terms of one- and two-particle Green functions is shown
to replace the operator identity. It is derived from equa-
tions of motion for Green functions and Ward identities as-
suming completeness of Bloch waves. We use two versions
of the Ward identity due to Velický and Vollhardt and
Wölfle. The former is nonperturbative but holds strictly
only for the homogeneous case (zero transfer momentum).
The latter identity holds for arbitrary transfer momenta
but can be proved only perturbatively. Each Ward iden-
tity is used in a different manner to relate the conductivity
with the density response.

The layout of the paper is as follows. In Section 2 we
summarize the definitions and useful representations of
the density and current response functions. In Section 3 we
show how the current-current correlation function emerges
from a momentum expansion of the density response func-
tion. Then in Section 4 we derive continuity equations
expressed in Green functions and use them to show how
the density response function can be revealed from the
conductivity. Based on the derived relation between the
density and current response function we introduce quan-
tum diffusion in Section 5, reveal the diffusion pole in the
quasistatic limit of the density response function and re-
late quantum diffusion to the electrical conductivity. In
Section 6 we illustrate the generally derived results on an
exactly solvable limit of infinite spatial dimensions. In the
Appendix we discuss assumptions for and the range of va-
lidity of the Vollhardt-Wölfle-Ward identity used in the
derivation of the continuity equation for Green functions.

2 Density and current response functions
in disordered systems

The simplest description of the electron motion in impure,
weakly correlated metals is provided by a tight-binding

Anderson model. It assumes noninteracting spinless elec-
trons moving in a random, site-diagonal potential Vi. Its
Hamiltonian reads

ĤAD =
∑
〈ij〉

tijc
†
icj +

∑
i

Vic
†
i ci . (5)

The values of the random potential Vi are site-independent
and obey a disorder distribution ρ(V ). Functions depend-
ing on the random potential Vi are averaged as

〈X(Vi)〉av =
∫ ∞

−∞
dViρ(Vi)X(Vi) . (6)

The averaged two-particle propagator (resolvent) is de-
fined as an averaged product of one-particle propagators

G
(2)
ij,kl(z1, z2) =〈[

z11̂− t̂− V̂
]−1

ij

[
z21̂− t̂− V̂

]−1

kl

〉
av

· (7)

The Fourier transform to momentum space is not uniquely
defined, since due to momentum conservation we have
only three independent momenta. For our purposes we
choose the following notation and definition of the Fourier
transform

G
(2)
kk′(z1, z2;q) =

1
N

∑
ijkl

e−i(k+q/2)Riei(k′+q/2)Rj

× e−i(k′−q/2)Rkei(k−q/2)RlG
(2)
ij,kl(z1, z2) . (8)

The density response function is determined from the
following thermodynamic representation of the Kubo for-
mula [13]

χ(q, iνm) =

− 1
N2

∑
kk′

kBT

∞∑
n=−∞

G
(2)
kk′(iωn, iωn + iνm;q). (9)

Here ωn = (2n + 1)πT are fermionic and νm = 2mπT
bosonic Matsubara frequencies at temperature T . Due to
the analytic properties of the two-particle Green func-
tion we can perform analytic continuation from imagi-
nary Matsubara to real frequencies using contour inte-
grals. Only the contribution along the real axis survives
and we obtain

see equation (10) above.

We have used the following definition

GAR
kk′(E, E + ω;q) = G

(2)
kk′(E − i0+, E + ω + i0+;q)
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σαα(q, ω) = −e2

4

1

N2

∑
k,k′

[
vα(k + q/2)− vα(−k + q/2)

] [
vα(k′ + q/2)− vα(−k′ + q/2)

]
×

∫ ∞

−∞

dE

2πω

{
[f(E + ω)− f(E)]GAR

kk′ (E, E + ω;q) + f(E)GRR
kk′ (E, E + ω;q)

−f(E + ω)GAA
kk′(E, E + ω;q)− f(E)[GRR

kk′ (E,E;q)−GAA
kk′(E, E;q)]

}
· (15)

and analogously for the functions GRR and GAA, where
both energies are from the upper and lower complex en-
ergy half-plane, respectively. We have denoted the Fermi
functionf(E) = [1 + exp{β(E − µ)}]−1 with the chemical
potential µ.

The two-particle Green function is generally deter-
mined from a two-particle irreducible vertex and a Bethe-
Salpeter equation. The former is known only approxi-
mately, except for special limits. Some specific elements
of the full two-particle Green function can, however, be
evaluated without knowing the two-particle irreducible
vertex. They can be directly related to the one-particle
Green function. This is enabled by Ward identities. A
Ward identity relating the averaged one- and two-particle
Green functions reads

1
N

∑
k′

G
(2)
kk′(z1, z2;0) =

1
z2 − z1

[G(k, z1)− G(k, z2)] ,

(11)
and was proved for the first time within the coherent-
potential approximation by Velický [4]. It is a nonper-
turbative identity valid quite generally beyond the CPA.
It reflects probability conservation in the space of Bloch
waves and is a consequence of completeness of extended
states [11]. Completeness of Bloch waves cannot, however,
be proved in the thermodynamic limit and must be as-
sumed. As a consequence of this identity we obtain van-
ishing of the density response function for a homogeneous
global perturbation, i.e., for q = 0. Using (11) in (10) we
easily find

χ(0, ω + i0+) =
1
ω

∫ ∞

−∞

dE

2πi

{
f(E + ω)

[
GA(E + ω)

− GR(E + ω)
]− f(E)

[
GA(E)−GR(E)

]}
= 0. (12)

Another situation where we do not need to know the
two-particle irreducible vertex is the static limit, ω = 0.
First, the static density response function is real and reads

χ(q, 0) =
1

N2

∑
kk′

∫ ∞

−∞

dE

π
f(E)=GRR

kk′(E, E;q) (13a)

that in the limit q → 0 goes over to

χ(0, 0) =
∫ ∞

−∞

dω

π

∂f(ω)
∂ω

=GR(ω) −−−→
T→0

nF (13b)

with nF being the density of states at the Fermi level
and GR(ω) = N−1

∑
q GR(q, ω). Note that equations (13)

hold only in the limit ω/q → 0. In the inverse case,

q/ω → 0, equation (12) applies. Non-commutativity of
the limits ω → 0 and q → 0 indicates that the point
q = 0, ω = 0 is not analytic in the same manner as in the
Fermi liquid theory [14].

The current-current correlation function Παβ(q, t) de-
termines the current j(q, t) in the system perturbed by
an external vector potential A(q, t). The tensor of the
electrical conductivity σαβ(q, t) determines the current re-
sponse to an external electric field. It can be obtained
from the current response function by using a relation
E(x, t) = −Ȧ(x, t). In the Fourier representation we ob-
tain [15]

σαβ(q, ω+) =
i

ω
[Παβ(q, ω+)−Παβ(q, 0)] , (14)

where ω+ = ω + i0+. The compensation term Παβ(q, 0)
on the right-hand side of equation (14) is real and has
been introduced to warrant finiteness of the complex con-
ductivity. This additive term is not generated from the
Kubo formula with a commutator of current operators.
It originates from gauge invariance of the electron gas in
an external electromagnetic field [16]. According to equa-
tion (14) there is no current in the system with a static
vector potential and the static (complex) conductivity can
be defined only via a dynamical one from the limit ω → 0.

Unlike the density response function the current re-
sponse function cannot be simplified in any limit. To de-
termine the conductivity from equation (14) we have to
know the two-particle irreducible vertex. The current re-
sponse function alike the density response function is a
complex quantity with the same analytic properties. The
parallel components are of interest for us. We have for real
frequencies

see equation (15) above.

We have denoted the group velocity vα(k) =
~
−1∂/∂kαε(k), where ε(k) is the dispersion relation of the

underlying lattice.

3 Dynamical conductivity calculated
from density response

In this section we show how the dynamical conductiv-
ity can be obtained from the long-range behavior of the
density response (hydrodynamic limit of small transfer
momenta). To this purpose we use the Velický-Ward iden-
tity, equation (11). It enables us to evaluate averaged ma-
trix elements of the two-particle Green function with zero
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I2(z+, z−q) = Tr
{

Ĝ(z+)Ĝ(z−) + Ĝ(z+)
[
∆1 t̂ + ∆2t̂

]
Ĝ(z+)Ĝ(z−)

− Ĝ(z+)Ĝ(z−)
[
∆1 t̂−∆2 t̂

]
Ĝ(z−)− Ĝ(z+)∆1 t̂Ĝ(z+)Ĝ(z−)∆1t̂Ĝ(z−)

+ Ĝ(z+)
[
∆1t̂Ĝ(z+)∆1t̂Ĝ(z+) + Ĝ(z−)∆1t̂Ĝ(z−)∆̂1t

]
Ĝ(z−)

}
· (19)

Tr
{

Ĝ(z+)
[(

∆1t̂ + ∆2t̂
)
Ĝ(z−)− Ĝ(z+)

(
∆1 t̂−∆2 t̂

)]
Ĝ(z−)

}
=

1

z+ − z−

{
Tr

[(
Ĝ′(z+) + Ĝ′(z−)

)
∆1t̂

]
+ Tr

[(
Ĝ′(z+)− Ĝ′(z−)

)
∆2t̂

]
− 2

z+ − z−
Tr

[
∆1 t̂

(
Ĝ(z+)− Ĝ(z−)

)]}
, (20a)

Tr
{

Ĝ(z+)∆1 t̂Ĝ(z+)Ĝ(z−)∆1t̂Ĝ(z−)
}

=
1

(z+ − z−)2

{
Tr

[
Ĝ(z+)∆1 t̂Ĝ(z+)∆1t̂

]
+ Tr

[
Ĝ(z−)∆̂1tĜ(z−)∆1 t̂

]
− 2Tr

[
Ĝ(z+)∆1t̂Ĝ(z−)∆1t̂

]}
, (20b)

Tr
{

Ĝ(z+)
[
∆1 t̂Ĝ(z+)∆1 t̂Ĝ(z+) + Ĝ(z−)∆1 t̂Ĝ(z−)∆1 t̂

]
Ĝ(z−)

}
=

1

z+ − z−

{
Tr

[
Ĝ′(z+)∆1t̂Ĝ(z+)∆1t̂

]
− Tr

[
Ĝ′(z−)∆1 t̂Ĝ(z−)∆1 t̂

]
− 1

z+ − z−
Tr

[(
Ĝ(z+)− Ĝ(z−)

)
∆1t̂

(
Ĝ(z+)− Ĝ(z−)

)
∆1 t̂

]}
. (20c)

transfer momentum in terms of the one-particle propaga-
tor. Zero transfer momentum is a severe restriction on the
applicability and utilization of this Ward identity. Physi-
cally we are interested in the hydrodynamic limit, i.e., the
asymptotics q → 0. We are unable to extend identity (11)
beyond the homogeneous case. However, if we assume an-
alyticity of the asymptotics q → 0, we can use momentum
q as an expansion parameter and investigate the hydro-
dynamic limit perturbatively. The hydrodynamic limit is
analytic if frequency ω 6= 0, i.e., we are in the regime
q/ω � 1. We then can expand the density response func-
tion in powers of momentum q.

We define two configuration-dependent resolvent oper-
ators

Ĝ±(z) =
[
z±1̂− t̂∓∆1t̂−∆2t̂− V̂

]−1

(16)

where ∆1 t̂±∆2t̂ is a difference in the dispersion relation
of the two resolvents and is defined via its matrix elements
〈k|∆1 t̂|k′〉 = δ(k′−k) v(k)·q/2, 〈k|∆2 t̂|k′〉 = δ(k′−k) (q·
∇k)2ε(k)/8. We are interested in the following function of
two energies

I(z+, z−;q) =
1
N

Tr
[
Ĝ+(z+)Ĝ−(z−)

]
(17)

that can be, after averaging over the configurations of the
random potential, expressed via the two-particle Green
function

〈I(z+, z−;q)〉av =
1

N2

∑
kk′

G
(2)
kk′(z+, z−;q) . (18)

We assume that the expansion in the operators ∆1,2 t̂
commutes with the configurational averaging. We first ex-
pand the quantity I and then average the series term by
term. It is sufficient for our purposes to expand only to
second order in momentum q. This precision determines
the leading small-momentum behavior.

Expanding quantity I in ∆1,2 t̂ we have to keep the
order of operators in the products, since ∆1,2t̂ and the
resolvent Ĝ(z) do not commute. The expansion to second
order reads

see equation (19) above.

Each direct product of the resolvent operators
Ĝ(z±)Ĝ(z∓) can be simplified using identity (11).
Doing this consequently we end up with a sum of prod-
ucts of two resolvents. We have three different terms to
analyze:

see equations (20) above.

We insert equations (20) into expansion (19) and av-
erage over the configurations of the random potential Vi.
To recover the density response function we have to limit
the complex energies to the real axis from above or below
with which we distinguish the causality. We define corre-
lation functions that can be represented as traces of the
averaged two-particle Green function

Φab
E (q, ω) =

1
N2

∑
kk′

Gab
kk′(E, E + ω;q), (21)
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ΦAR
E (q, ω)− ΦAR

E (0, ω) = − 1

2ω

[〈
∂E

(
GR(E + ω) + GA(E)

)
q · v

〉]
+

1

8ω

[〈
∂E

(
GR(E + ω)−GA(E)

)
(q · ∇)2ε

〉]
+

1

ω2

[〈(
GR(E + ω)−GA(E)

)
q · v

〉]
− 1

4ωN2

∑
kk′

q · v(k) q · v(k′)
{

∂ε

[
GAA

kk′ (E + ε, E;0)−GRR
kk′ (E + ω, E + ω + ε;0)

]
ε=0

+
2

ω

[
GAA

kk′(E, E;0) + GRR
kk′ (E + ω, E + ω;0)− 2GAR

kk′ (E, E + ω;0)
]}

(22a)

and analogously of the electron-electron (ΦRR) and hole-hole (ΦAA) ones that can be written generically as

Φaa
E (q, ω)− Φaa

E (0, ω) = − 1

2ω
[〈∂E (Ga(E + ω) + Ga(E))q · v〉]

+
1

8ω

[〈
∂E (Ga(E + ω)−Ga(E)) (q · ∇)2ε

〉]
+

1

ω2
[〈(Ga(E + ω)−Ga(E))q · v〉]

− 1

4ωN2

∑
kk′

q · v(k) q · v(k′)
{
∂ε [Gaa

kk′(E + ε, E;0)−Gaa
kk′(E + ω,E + ω + ε;0)]ε=0

+
2

ω
[Gaa

kk′(E, E;0) + Gaa
kk′ (E + ω, E + ω;0)− 2Gaa

kk′ (E, E + ω;0)]

}
. (22b)

where a, b stand for A (advanced), R (retarded), depend-
ing on whether the imaginary part of the corresponding
frequency argument is positive or negative. We then can
represent the leading asymptotics of the averaged electron-
hole correlation function for small momenta q

see equations (22) above.

In the above equations we have used angular brackets
to denote summation over fermionic momenta from the
first Brillouin zone, that is

〈G(ω) fq〉 =
1
N

∑
k

G(k, ω) fq(k) . (23)

Note that only the term with ω−2 from the electron-hole
correlation function diverges in the limit ω → 0 while
the electron-electron and hole-hole functions remain finite.
This is a manifestation of the diffusion pole missing in the
latter two correlation functions.

Different powers of momentum q and frequency ω ap-
pear in equations (22). There is no restriction on validity
of equations (22) in frequency but they hold only for small
momenta, more precisely only perturbatively up to sec-
ond order. Equations (22) establish relations between the
density-density and the current-current correlation func-
tions in the asymptotic limit q → 0. Generally, however,
these two functions are not directly proportional, since
the right-hand sides of equations (22) contain one-particle
contributions. They cancel each other if we combine the
electron-hole with the electron-electron and the hole-hole
correlation functions appropriately to build up the density
response function.

For the isotropic situation we define in the hydrody-
namic limit

g(ω) = −i lim
q→0

ω

q2
χ(q, ω) . (24a)

This quantity can be generalized to an anisotropic case as

gαβ(ω) = −iω
∂2

∂qα∂qβ
χ(q, ω)

∣∣
q=0

. (24b)

Function g(ω) measures the leading long-range correla-
tions of the density response. Its real part can be identified
with the diffusive conductivity or mobility of the system.
It is now easy to find an explicit representation of this
function using equations (22). All contributions except for
the last terms on the right-hand sides of equations (22)
cancel and we obtain equality σαα(0, ω) = e2gαα(ω), be-
ing just equation (4) in the limit q = 0. Note that in the
course of the derivation we had to sum contributions from
the electron-hole, electron-electron, and hole-hole correla-
tion functions and to integrate over energies.

If we resort to the low-frequency limit ω → 0, the dif-
fusion pole in the electron-hole correlation function dom-
inates in the density response and we recover the conduc-
tivity directly from ΦAR. It is interesting to note that in
this static limit we derive the mobility (dc-conductivity)
with contributions from GAR and GRR solely from the
electron-hole correlation function ΦAR.

4 Density response calculated
from conductivity

We showed in the preceding section how the conductivity
can be revealed from the small-momentum behavior of the
density response. In this section we express the current-
current correlation function in terms of the density-density
correlation function. The aid we use for this task is a
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G
(2)

kk′(z+, z−;q) = G(k+, z+)G(k−, z−)

[
δ(k− k′) +

1

N

∑
k′′

Λkk′′ (z+, z−;q)G
(2)

k′′k′(z+, z−;q)

]
(26)

[∆qε(k)−∆z] G
(2)
kk′ (z+, z−;q) = ∆qG(k; z+, z−)δ(k− k′) +

1

N

∑
k′′

Λkk′′ (z+, z−;q)

×
[
∆qG(k; z+, z−)G

(2)

k′′k′(z+, z−;q)−G
(2)

kk′ (z+, z−;q)∆qG(k′′; z+, z−)
]
. (29)

continuity equation and another Ward identity

Σ(k+, z+)−Σ(k−, z−) =
1
N

∑
k′

Λkk′(z+, z−;q)

× [
G(k′+, z+)−G(k′−, z−)

]
(25)

proved for retarded and advanced functions by Vollhardt
and Wölfle in reference [17]. We have denoted k± =
k ± q/2. Note that identity (25) for q = 0, z+ = EF +
i0+, z− = EF − i0+ was already used in reference [18].
Identity (25) is related to equation (11), however, the two
Ward identities are identical neither in the derivation nor
in the applicability and validity domains. The former holds
for nonzero transfer momentum q, i.e., for an inhomoge-
neous perturbation while the latter only for q = 0. On the
other hand, we show in the appendix that equation (25),
unlike equation (11), holds only perturbatively within an
expansion in powers of the random potential. Hence, we
can prove this identity for nonzero transfer momentum
q only by assuming that perturbation expansions for the
self-energy Σ and simultaneously for the two-particle ir-
reducible vertex Λ converge. It was shown earlier that in
the homogeneous case, q = 0, the Vollhardt-Wölfle-Ward
identity follows from the Velický-Ward one [11]. We stress
that both variants of the Ward identity hold only if Bloch
waves form a complete set of quantum states for lattice
electrons subject to a random potential.

To derive a continuity equation for Green functions
we start with an equation of motion for the two-particle
Green function. It is a Bethe-Salpeter equation where
the input is a two-particle irreducible vertex. We have
three possibilities (topologically distinct scattering chan-
nels) how to construct a Bethe-Salpeter equation [11]. For
our purposes the electron-hole channel is the most suitable
one. The Bethe-Salpeter equation in momentum represen-
tation there reads

see equation (26) above
where Λkk′(z+, z−;q) is the two-particle irreducible vertex
from the electron-hole channel. The one-electron propaga-
tors G(k±, z±) = [z±−Σ(k±q/2, z±)− ε(k±q/2)]−1 are
the averaged resolvents.

The product of the one-electron propagators from the
right-hand side of equation (26) can be decomposed into

G(k+, z+)G(k−, z−) =

− ∆qG(k; z+, z−)
∆z −∆qΣ(k; z+, z−)−∆qε(k)

(27)

where we denoted

∆qε(k) = ε(k+)− ε(k−), (28a)

∆qG(k; z+, z−) = G(k+, z+)−G(k−, z−). (28b)

and analogously the difference ∆qΣ(k; z+, z−). We multi-
ply both sides of the Bethe-Salpeter equation (26) by the
denominator from the right-hand side of equation (27) and
assume validity of equation (25). We then obtain a “dif-
ference” equation of motion

see equation (29) above.

We now define correlation functions generalized to com-
plex frequencies describing density-density and density-
current correlations by summing over the fermionic mo-
menta in equation (29)

Φ(z1, z2;q) =
1

N2

∑
kk′

G
(2)
kk′(z1, z2;q), (30a)

Φε(z1, z2;q) =
1

N2

∑
kk′

∆qε(k)G(2)
kk′(z1, z2;q), (30b)

Φ̄ε(z1, z2;q) =
1

N2

∑
kk′

G
(2)
kk′(z1, z2;q)∆qε(k′). (30c)

The contributions from the two-particle irreducible vertex
Λ in equation (29) cancel each other provided the two-
particle irreducible vertex is symmetric, i.e., Λkk′ = Λk′k.
If so, we end up with a continuity equation relating gen-
eralized density-density and density-current correlation
functions

Φε(z+, z−;q)−∆zΦ(z+, z−;q) =
1
N

∑
k

∆qG(k; z+, z−). (31a)

Another continuity equation can be derived by multiply-
ing equation (29) with the energy difference and summing
over the fermionic momenta. We obtain an equation relat-
ing generalized current-current and density-current corre-
lation functions

Φεε(z+, z−;q)−∆zΦ̄ε(z+, z−;q) =
1
N

∑
k

∆qG(k; z+, z−)∆qε(k). (31b)
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σεε(q, ω) = −e2

∫ ∞

−∞

dE

2πω

{
[f(E + ω)− f(E)] ΦAR

εε (E, E + ω;q) + f(E)ΦRR
εε (E, E + ω;q)

−f(E + ω)ΦAA
εε (E, E + ω;q)− f(E)

[
ΦRR

εε (E, E;q)− ΦAA
εε (E,E;q)

]}
. (36)

σεε(q, ω) + ie2ωχ(q, ω) =
e2

ω

∫ ∞

−∞

dE

2π
f(E)

[
ΦRR

εε (E, E;q)− ΦAA
εε (E, E;q)

]
− ie2

ω

∫ ∞

−∞

dE

π
f(E)

1

N

∑
k

∆qε(k)
[
=GR(k+, E)−=GR(k−, E)

]
= 0 . (37)

Combining the above two continuity equations we obtain
the resulting relation between the generalized current-
current and density-density correlation functions replac-
ing the operator continuity equation (3)

Φεε(z+, z−;q)− (∆z)2Φ(z+, z−;q) =
1
N

∑
k

∆qG(k; z+, z−) [∆z + ∆qε(k)] . (31c)

Actually, the function Φεε is strictly speaking not the
current-current correlation function. We used an energy
difference ∆qε(k) from equation (28a) in this correlation
function instead of momentum. Only in case of quadratic
dispersion relation we have ∆qε(k) = ~q·k/m and the en-
ergy difference is proportional to the group velocity. Oth-
erwise Φεε equals the current-current correlation function
only in the small-momentum limit, q → 0. We use

∆qε(k) ≈ q · v(k) (32)

to convert the energy difference in the hydrodynamic limit
to a multiple of the group velocity v(k) and denote

Φαβ(z+, z−;q) =
1

N2

∑
kk′

vα(k)vβ(k′)G(2)
kk′(z+, z−;q).

(33)
With the aid of equation (33) we rewrite continuity equa-
tion (31c) to∑
αβ

qαqβΦαβ(z+, z−;q)−
∑
α

qα 〈vα∆qG(z+, z−)〉 =

∆z [∆zΦ(z+, z−;q) + 〈∆qG(z+, z−)〉] (34)

where the angular brackets stand for the summation over
fermionic momenta from the first Brillouin zone as defined
in equation (23). In the isotropic case we obtain

Φαα(z+, z−;q) =
1
q2

q · 〈v∆qG(z+, z−)〉

+
∆z

q2
[∆zΦ(z+, z−;q) + 〈∆qG(z+, z−)〉] . (35)

It is the most general relation between the current-current
and the density-density correlation functions for arbi-
trary complex frequencies and non-zero momenta. It holds

for finite momenta as far as the dispersion law remains
quadratic. Equation (35) for general dispersion relations is
valid only in the hydrodynamic regime of small momenta.

To return to measurable quantities we limit the com-
plex frequencies to the real axis. To derive exact relations
we first define a generalization of the conductivity with
the correlation functions Φab

εε :

see equation (36) above.

We use continuity equation (31c) to relate σεε and χ and
find

see equation (37) above.

Vanishing of the right-hand side in equation (37) can
be explicitly manifested when continuity equation (31c)
is applied to the two-particle correlation functions ΦRR

εε

and ΦAA
εε . The two terms on the right-hand side of equa-

tion (37) add to zero.
We can extract the electrical conductivity from

σεε(q, ω) in the limit q → 0 by replacing Φεε =
∑

α q2
αΦαα

that leads to σεε(q, ω) =
∑

α q2
ασαα(q, ω). In the isotropic

case we then reveal equation (4) from equation (37). It
is important to state that this proof of equation (4) is
strongly based on the Ward identity (25) for nonzero mo-
menta. The latter can be proved only perturbatively, see
Appendix, and hence it is unclear whether equation (4)
holds beyond the perturbative regime near the Anderson
localization transition.

5 Diffusion, diffusion pole, and Einstein
relation in quantum systems

In the preceding sections we proved validity of equation (4)
for strongly disordered lattice systems in the hydrody-
namic limit, q → 0. It is a useful relation in particu-
lar in approximate theories. It enables us to approximate
only either the density response or the conductivity and
to determine the other one from equation (4). We can
find another relation between the density response and
the electron-hole correlation function and the conductiv-
ity when we resort to the quasistatic limit, ω → 0. In this
limit the density response function is in the leading order
determined by the electron-hole correlation function. Its
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long-range fluctuations are then governed by a diffusion
constant.

Diffusion, i.e., the particle motion caused by inhomo-
geneities in the chemical potential, is in classical systems
defined via Fick’s law. It relates the static current with
the negative gradient of the charge density via a diffusion
constant [3,13]. The diffusion constant introduced in this
way has in classical physics an intuitive phenomenolog-
ical character without a proper microscopic justification.
This can come only from a quantum treatment. The study
of diffusion in quantum disordered systems was launched
by the seminal work of Anderson analyzing the destruc-
tive effects of quantum coherence on diffusion of disor-
dered electrons [19]. Since then diffusion has become part
of transport studies of disordered and interacting quantum
itinerant systems [8,12,20]. However, even in these quan-
tum approaches diffusion is introduced either via (self-
consistent) perturbation expansions leading to the diffu-
sion pole in the electron-hole correlation function or via
the semiclassical limit where the electron-hole correlation
function becomes a Green function of the classical diffu-
sion equation [10].

Here we propose a nonperturbative way to define dif-
fusion via a quantum response function. We define a new
tensor Dαβ(q, ω) so that the conductivity tensor and the
density response are related as follows

σαβ(q, ω) = −e2Dαβ(q, ω) [χ(q, ω)− χ(q, 0)] . (38)

It is a formal definition of a tensor Dαβ(q, ω) that we
can call quantum diffusion “constant”. We show in the
following that this definition provides a suitable way to
extend the notion of classical diffusion to quantum models
enabling us to retain the Einstein relation between the
conductivity and the diffusion constant and the role of
the static diffusion constant at the diffusion pole of the
electron-hole correlation function.

We first use equation (4) to exclude the density re-
sponse χ(q, ω) from equation (38) and equation (13a) to
determine χ(q, 0). Doing so we obtain in the isotropic case[

1 +
iq2

ω
D(q, ω)

]
σ(q, ω) =

e2D(q, ω)
∫ ∞

−∞

dE

π
f(E)=ΦRR

E (q, 0) . (39)

If we define the homogeneous dynamical conductivity
σ(ω) = σ(0, ω) (in the same way also the dynamical diffu-
sion) and use the Velický-Ward identity (11) in the limit-
ing case z1−z2 → 0 we obtain a dynamical generalization
of the Einstein relation

σ(ω) = e2D(ω)
∫ ∞

−∞

dE

π
f ′(E)=GR(E)

= e2D(ω)
(

∂n

∂µ

)
T

(40a)

that at zero temperature reduces to

σ(ω) = e2nF D(ω). (40b)

A classical version of the static limit of this formula was
proved by Einstein for the Brownian motion in a random
medium [21] and later on it was re-derived in the frame-
work of nonequilibrium statistical mechanics by Kubo [3].
Here we derived the Einstein relation for quantum re-
sponse functions and showed that it is a consequence of
gauge invariance expressed by equation (4).

We can use equation (40a) to derive Fick’s law for the
diffusion current. If the electron gas is perturbed by a
static and slowly spatially varying scalar electric potential
ϕ the new thermodynamic equilibrium will be fixed by an
electrochemical potential ξ = µ + eϕ (electron charge is
−e). There are no currents in equilibrium, so the diffu-
sion current jdiff ∝ ∇ξ must compensate the current due
to the external electric field. With the aid of the static
limit of equation (40a) we can then write for the diffusion
current [22]

jdiff =
1
e
j = −1

e
σ∇ϕ

= −D

(
∂n

∂µ

)
T

∇(µ + eϕ) = −D∇n. (41)

We have denoted the static diffusion constant D = D(0)
and assumed that the charge density varies only due to
the variation of the electrochemical potential. It is evident
from this derivation that Fick’s law holds only in the static
limit and for slowly spatially varying charge density.

It has not yet become clear from the above reasoning
how the isotropic diffusion function D(q, ω) is related to
the classical diffusion equation and to the diffusion pole
in the electron-hole correlation function. The existence of
the diffusion pole in quantum systems is usually deduced
from the semiclassical limit and the diffusion equation.
We can prove, however, the existence of the diffusion pole
entirely from first quantum principles. We use equation (4)
to exclude conductivity σ(q, ω) from equation (38) and
come to a representation for the density response

χ(q, ω) =
D(q, ω)χ(q, 0)q2

−iω + D(q, ω)q2
(42)

known from other treatments of diffusion [23]. Equa-
tion (42) holds for arbitrary frequencies and momenta
within the range of quadratic dispersion relation.

This representation directly indicates a singularity in
the ω → 0, q → 0 limit of the density response. Since the
order of the limits is relevant for the result, we have to
specify it explicitly. To single out the singular contribu-
tion in the density response function we have to choose
ω/q � 1.

We find from equation (10)

χ(q, ω) = χ(q, 0)+
iω

2π

(
ΦAR

EF
(q, ω) + O(q0)

)
+O(ω). (43)

Using this asymptotics in equation (42) we obtain an
explicit manifestation of the diffusion pole in the zero-
temperature electron-hole correlation function

ΦAR
EF

(q, ω) ≈ 2πnF

−iω + Dq2
(44)
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λ(z+, z−) =
1

G(z+)G(z−)

[
1−

〈
1

1 + (Σ(z+)− Vi) G(z+)

1

1 + (Σ(z−)− Vi)G(z−)

〉
av

−1
]

=
Σ(z+)−Σ(z−)

G(z+)−G(z−)
=

∆Σ

∆G
· (47b)

representing the singular part of the electron-hole corre-
lation function. We identified the static diffusion constant
with D = limq→0 D(q, 0). Representation (44) was derived
for zero temperature in the asymptotic limit q → 0, ω → 0
with the restriction ω/q � 1.

To extend it to the opposite limit, q/ω � 1, we have
to show that the diffusion function D(q, ω) is analytic
in the limit q → 0, ω → 0. It is not a priori clear that
the diffusion constant in equation (44) equals the dif-
fusion constant obtained from the inverse order of lim-
its D = limω→0 limq→0 D(q, ω) used in Fick’s law, equa-
tion (41). The quantum diffusion function D(q, ω), how-
ever, was introduced in such a way that the limits ω → 0
and q → 0 can be interchanged and we have only one def-
inition for the static diffusion constant from the density
response function

D =
i

2
limω→0∇2

qχ(q, ω)|q=0

limq→0 ∂ωχ(q, ω)|ω=0

=
2πnF

limq→0 q2ΦAR(q, 0)
· (45)

The first equality in equation (45) holds quite generally
while the second one only at zero temperature. Note that
representation (44) holds only at zero temperature for
small momenta and in the quasistatic limit ω → 0.

We proved in equation (44) that quantum diffusion
introduced via a response function in equation (38) re-
duces in the static and homogeneous limit to the diffu-
sion constant. It determines the long-range fluctuations
of the electron-hole correlation function and hence in the
semiclassical limit also the diffusive behavior in the diffu-
sion equation. However, only the static diffusion constant
D enters the denominator of the electron-hole correlation
function. The same holds for the diffusion current and
Fick’s law in equation (41). A dynamical generalization of
the diffusion constant from the electron-hole correlation
function to a frequency-dependent quantity via

nF D̃(ω) =
ω2

4π
∇2

qΦ
AR
EF

(q, ω)
∣∣
q=0

, (46)

cannot be linked to the frequency dependent conductiv-
ity. Such a dynamical diffusion is nevertheless often used
in the literature as a replacement for the dynamical con-
ductivity in quantitative treatments of Anderson localiza-
tion [7]. Beware that the dynamical diffusion defined in
equation (46) no longer fulfills the Einstein relation and
hence deviates from the dynamical conductivity calculated
from the Kubo formula with the current-current correla-
tion function. We show explicitly in the next section that
in an exactly solvable mean-field limit the left-hand side
of equation (46), if related to the conductivity via the Ein-
stein relation equation, (40b), differs at finite frequencies

from the conductivity obtained from the direct Kubo for-
mula.

6 Infinite-dimensional model: Explicit exact
solution

We derived exact relations between density and current
correlation functions for a lattice electron gas in a ran-
dom potential. We now demonstrate the generally derived
formulas explicitly on an exactly solvable limit of infinite
spatial dimensions. This limit serves as a mathematical
tool for the definition of a mean-field theory not only for
classical spin systems but also for itinerant disordered and
interacting models [24–26]. In case of the Anderson model
of disordered electrons the mean-field theory, i.e., the limit
of infinite spatial dimensions, equals the coherent poten-
tial approximation. We hence resort in this section to this
solution.

Equation determining the local self-energy in the
coherent-potential approximation is Soven’s equation that
can be written as [11]

G(z) =
〈[

G−1(z) + Σ(z)− Vi

]−1
〉

av
(47a)

where G(z) = N−1
∑

k G(k, z). The two-particle irre-
ducible vertex then is

see equation (47b) above.

The second equality in equation (47b) is the Velický-Ward
identity.

It is straightforward to find an explicit form of the
two-particle Green function in the coherent-potential ap-
proximation

G
(2)
kk′(z+, z−;q) = G+(k)G−(k)

[
δ(k− k′)

+
λ(z+, z−)G+(k′)G−(k′)
1− λ(z+, z−)〈G+G−〉

]
(48)

where G±(k) = G(k ± q/2, z±) and 〈G+G−〉 =
N−1

∑
k G+(k)G−(k).

Using the two-particle Green function, equation (48),
we easily obtain explicit representations for the density-
density and density-current correlation functions

Φ(z+, z−;q) =
〈G+G−〉

1− λ(z+, z−)〈G+G−〉 , (49a)

Φε(z+, z−;q) =
〈∆qεG+G−〉

1− λ(z+, z−)〈G+G−〉 · (49b)
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We now insert equations (49) together with the ex-
plicit representation for the two-particle Green function,
equation (48), into the right-hand side of equation (31a)
and find

Φε(z+, z−;q)−∆zΦ(z+, z−;q) =〈
(∆qε−∆z) ∆qG

∆qε−∆z−∆Σ

〉
1− λ(z+, z−)〈G+G−〉
=

〈∆G〉 −∆Σ〈G+G−〉
1− λ(z+, z−)〈G+G−〉 = 〈∆G〉. (50)

That is, continuity equation (31a) is fulfilled. Analogously
we can explicitly verify equations (31b) and (31c). Actu-
ally, validity of continuity equations (31) follows from the
Velický-Ward identity, since the two-particle irreducible
vertex λ(z+, z−) is momentum independent. In such a case
the Vollhardt-Wölfle and the Velický identities are fully
equivalent.

As next we show that the dc-conductivity in the
coherent-potential approximation can be calculated using
the diffusion constant D from equation (44). To this pur-
pose we need to evaluate ∇2

q〈G+G−〉 at zero transfer fre-
quency ω = 0. We have

∇2
q〈G+G−〉 =

1
2
∇q〈(G−∇kG+ −G+∇kG−)〉

=
1
4
〈G−∇2

kG+ + G+∇2
kG− − 2∇kG+∇kG−〉

= −〈∇kG+∇kG−〉 (51)

where in the last equality we used integration per parts in
momentum space. We utilize this result and equation (11)
to obtain the electron-hole correlation function

Φ(q, ∆z) = − ∆G

∆z − 1
2

∆Σ

∆Σ −∆z

〈v2
k(∆G)2〉
∆G

q2

, (52)

that in the low-energy limit reduces for real frequencies to

ΦAR(q, ω) =
2πnF

−iω + σCPAq2/e2nF
(53)

proving the Einstein relation for the dc-conductivity σCPA

of the coherent-potential approximation. It is evident from
equation (52) that the frequency-dependent coefficient in
the denominator of the electron-hole correlation func-
tion does not equal the dynamical diffusion from equa-
tion (40b). To show this explicitly we use definition (46)
and compare the result with the real-part of the conduc-
tivity at zero temperature given by

<σαα(ω) = e2

∫ EF

EF−ω

dE

2πω

[<ΦAR
αα (E, E + ω;0)

− <ΦRR
αα (E, E + ω;0)

]
= σAR

αα (ω) + σRR
αα (ω). (54a)

We separated contributions to the conductivity from the
electron-hole and electron-electron current-current corre-
lation functions, σAR, σRR. It is useful to introduce also a
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Fig. 1. Dynamical conductivities defined in three different
manners, equations (46, 54) for a binary alloy on a simple cubic
lattice with the random potential Vi = ±0.6w, weighted with
x = 0.1 and 1− x, respectively. Frequency is ω = 0.2w in the
upper pane and ω = 0.4w in the lower pane. Here w is the
energy half-bandwidth.

simplified asymptotic form of the low-frequency conduc-
tivity

<σ̄αα(ω) = e2 1
2π

[<ΦAR
αα (EF − ω, EF ;0)

− <ΦRR
αα (EF − ω, EF ;0)

]
(54b)

where the integrand in the energy integral is replaced by
its initial value. This representation is asymptotically ex-
act in the limit ω → 0 for smooth current-current correla-
tion functions Φαα near the Fermi energy EF and carries
the same frequency dependence as the diffusion constant
D̃(ω) defined in equation (46).

For the numerical calculations we use a binary al-
loy with two values of the random potential Vi = ±∆
weighted with probability x and 1−x. Figure 1 shows the
two dynamical conductivities and the diffusion constant
from equation (46) on a simple cubic lattice with param-
eters x = 0.1, ∆ = 0.6w for frequencies ω = 0.2w and
ω = 0.4w with w being the half-bandwidth. Note that the
split-band value of the disorder strength is ∆c ≈ 0.4w.
Although the three quantities differ for low frequencies
only slightly inside the band, they behave differently near
the band edges and for higher frequencies. In particular,
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Fig. 2. Weight of contributions to the full conductivity from
the electron-hole and electron-electron parts in the static case,
ω = 0. The setting is the same as in Figure 1. The lower pane
shows the details of the satellite (split-off) band.

the diffusion constant shows anomalous behavior when the
Fermi energy approaches the band edges. The compen-
sating terms from the electron-electron (density-density)
correlation function get relevant there. Anomalous be-
havior of the diffusion constant is more transparent for
higher frequencies (lower pane). We cannot evidently rely
on nF D̃(ω) as a good approximation to the conductivity
for finite frequencies except for Fermi energies deep inside
the energy band. The smoothening impact of the integral
over frequencies on the behavior of the dynamical conduc-
tivity gets clear from our numerical results.

Recently a discussion was renewed about the propor-
tion of contributions to the Kubo formula for the elec-
trical conductivity from the electron-hole and electron-
electron current-current correlation functions, σAR and
σRR in equation (54a), respectively [27]. In Figure 2 these
contributions are compared for the same setting of the
binary alloy on a simple cubic lattice for ω = 0. The con-
tribution from σAR dominates inside the band far from
the band edges. Outside the central band and in the
satellite impurity band the importance of the compen-
sating effects of σRR is evident. The situation worsens
when we go over to the dynamical conductivity, Figure 3.
We can see that there is no region where the electron-
hole contribution would dominate or approximate the full
conductivity reliably. It is important to note that the
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Fig. 3. Electron-hole and electron-electron contributions to
the conductivity at ω = 0.4w. The lower pane shows differences
between the conductivity obtained from the diffusion constant
D̃ and σAR.

conductivity σAR differs from the (dynamical) diffusion
constant defined from the electron-hole density-density
correlation function, equation (46). The latter contains
both terms, σAR and σRR even in the static limit. The dif-
ference is evident in Figure 3. The conductivity calculated
from D̃(ω) is much closer to the full electrical conductivity
than σAR. With increasing frequency the role of the term
σRR increases. We hence cannot interchange contribu-
tions to the electrical conductivity from the electron-hole
density-density correlation function ΦAR(q, ω) (its leading
q-dependent term) and the conductivity σAR(q, ω). The
former is generally a better approximation than the latter
except for Fermi energies near the band edges and in band
tails where both the approximations equally fail.

7 Discussion and conclusions

We showed in this paper that a number of general relations
between density-density, density-current and current-
current correlation functions hold in the hydrodynamic
limit. With the aid of these relations we proved that equiv-
alence between the electrical conductivity and the density
response, equation (4), is a consequence of gauge invari-
ance in the quantum space of Bloch waves. We further
generalized this relation beyond the hydrodynamic limit
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of strongly disordered electron systems, equation (37). We
introduced a response function Dαβ(q, ω) that we identi-
fied with quantum diffusion. We showed that quantum dif-
fusion defined in this manner fulfills in the homogeneous
case (q = 0) the Einstein relation between the electrical
conductivity and the diffusion constant. The static limit
(ω = 0) of the diffusion constant then enters Fick’s law
and the classical diffusion equation. We demonstrated that
only the static diffusion constant enters the electron-hole
correlation function where it controls its long-range fluc-
tuations in the quasistatic limit. There is no extension of
the diffusion constant from a dynamical, inhomogeneous
electron-hole correlation function that would equal the dy-
namical electrical conductivity from the Kubo formula.

The electrical conductivity can be calculated from the
density response and vice versa only if Ward identities
are fulfilled. We used two, not fully equivalent, types of
the Ward identity for noninteracting electrons in a ran-
dom potential. They both are generally a consequence of
completeness of Bloch waves and reflect probability con-
servation in the space of extended waves. They can be
proved only if perturbation expansion in the strength of
the random potential for the irreducible two-particle ver-
tex converges and results in an analytic function. The
Velický-Ward identity, equation (11), holds only for the
homogeneous case, i.e., zero transfer momentum in the
two-particle Green function. To be of use in the calcu-
lation of the conductivity we had to assume analyticity
of the hydrodynamic limit for all frequencies and to use
the transfer momentum as an expansion parameter. On
the other hand, the Vollhardt-Wölfle-Ward identity, equa-
tion (25), holds for arbitrary transfer momenta in the
two-particle function, but it can be proved only via a per-
turbation (diagrammatic) expansion for the two-particle
vertex function. Moreover, to warrant this identity we are
not allowed to sum selected classes of relevant diagrams.
A single relevant diagram for the two-particle irreducible
vertex of order n produces n − 1 irrelevant diagrams as
can be seen from the proof of the Ward identity. Selec-
tion of relevant diagrams may be, however, dictated by
the existence of a singularity in the two-particle function
or by analyticity (causality) of the theory. There is hence
no generally valid argument that the Ward identities and
consequently the relation between the conductivity and
the density response hold beyond the perturbative regime
near the Anderson localization transition.

Quantum diffusion was defined as a special combina-
tion of the conductivity and the density response function,
equation (38). We chose such an extension of the diffusion
constant so that we could keep the Einstein relation be-
tween the optical conductivity and the homogeneous diffu-
sion. We explicitly demonstrated that it is only the static
diffusion constant D that enters the electron-hole correla-
tion function where it controls its long-range fluctuations
near the diffusion pole. A dynamical extension of the dif-
fusion constant defined from the dynamical electron-hole
correlation function does not obey the Einstein relation
and hence is no longer related to the dynamical conduc-

tivity calculated from the Kubo formula. This conclusion
has not been realized in the existing literature.

To conclude, we showed that gauge invariance in the
space of Bloch waves of extended electrons in a random
potential responding to an electromagnetic perturbation
holds within linear-response theory if Ward identities (11)
and (25) are fulfilled. In this case an (approximate) av-
eraged two-particle Green function generates density and
current response functions consistent in the hydrodynamic
limit with relation (4). Or, what is more important, we
can safely apply the approximate two-particle Green func-
tion only in either Kubo formula and use equation (4)
to determine the other response function. We explicitly
demonstrated that Ward identities can be proved only
in the “diffusive” regime characterized by convergence of
the perturbation expansion for the two-particle irreducible
vertex and by analyticity of the hydrodynamic limit for
all frequencies. A necessary condition for validity of Ward
identities is completeness of extended Bloch waves. This
cannot be generally proved in the thermodynamic limit
of random systems and must be assumed. Completeness
of extended Bloch waves means that there are no bound
localized states in the system. We, however, know that
in solutions with weakly or strongly localized electrons a
singularity in the electron-hole irreducible vertex emerges
and Bloch waves need not span the entire space of quan-
tum states. One has to bear this aspect in mind when
interpolating between the diffusive and localized regimes.

The work was accomplished within the project AVOZ1-010-
914 of the Academy of Sciences of the Czech Republic and
was supported in part by Grant No. 202/01/0764 of the Grant
Agency of the Czech Republic.

Appendix A: Proof and validity
of the Vollhardt-Wölfle-Ward identity

The Vollhardt-Wölfle-Ward identity (25) is a primary tool
for proving the continuity equations relating the current
and density correlation functions. Understanding its proof
and the domain of its validity is hence very important. The
original proof of Vollhardt and Wölfle [17] is restricted to
real frequencies with different small imaginary parts only.
However, it is valid for arbitrary complex frequencies. To
demonstrate this we summarize the principal assumptions
and steps of its proof from which we conclude on the do-
main of validity of equation (25).

First, we have to assume that the self-energy Σ is a
functional of the full one-electron propagator G

Σ(p, z) = Σ [G] (p, z) (A.1)

so that the perturbation expansion in the random po-
tential consists of irreducible diagrams only. We consider
here only noninteracting electrons in a random poten-
tial although the reasoning can be extended to correlated
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Σ(p, z) = 〈V 〉av +
∞∑

n=1

[(n+1)/2]∑
k=1

n+1∑
j1,...,jk=1

∑
l1,...,lk

1

l1! . . . lk!
δ(l1 + . . . lk − n− 1)

〈
V l1

j1

〉
c
· · ·

〈
V lk

jk

〉
c∑

R1,...,Rn+1

∑
P{i1,...,in+1}

δj1,i1 . . . δj1,il1
δj2,il1+1 . . . δjk,in+1

1

Nn

∑
p1,...,pn

eiRi1 (p−p1)eiRi2 (p1−p2)e
iRin+1 (pn−p)

G(p1, z) . . . G(pn, z) (A.2)

∆Σ(p) = Σ+(p)−Σ−(p) =

∞∑
n=1

1

Nn

∑
p1,...,pn

∑
Dn

XDn(V ;p,p1, . . . , pn) [G+(p1) . . . G+(pn)−G−(p1) . . . G−(pn)] . (A.5)

G+(p1) . . . G+(pn)−G−(p1) . . . G−(pn) =
n∑

i=1

G+(p1) . . . G+(pi−1)×∆G(pi)G−(pi+1) . . . G−(pn) (A.6)

electrons as well. Perturbation expansion of the self-energy
Σ(p, z) in the random potential reads

see equation (A.2) above
where [x] is the integer part of x, P{i1, . . . , in+1} denotes
a permutation of the indices {1, 2, . . . , n +1}, and the an-
gular brackets stand for cumulant averages defined from

〈expV 〉av = exp

{ ∞∑
n=1

1
n!
〈V n〉c

}
· (A.3)

Only the momentum variables and momentum-dependent
functions are of importance. We denote Dn the sum of all
diagrams with n internal fermionic lines with momenta
p1, . . . ,pn. Then representation (A.2) can be simplified
to

Σ(p, z) = 〈V 〉av +
∞∑

n=1

1
Nn

×
∑

p1,...,pn

∑
Dn

XDn(V ;p,p1, . . . ,pn)G(p1, z) . . .G(pn, z).

(A.4)

We use notation G±(p) = G(p ± q/2, z±) and Σ±(p) =
Σ(p ± q/2, z±) and apply expansion (A.4) for the self-
energy difference. We obtain

see equation (A.5) above.
The difference of the products of one-electron propagators
can further be rewritten to a sum

see equation (A.6) above
where left (right) to the difference ∆G(pi) only G+(pj)
(G−(pj)) appear. We sum all diagrams for the fixed dif-
ference of the one-electron propagators, being now two-
particle irreducible diagrams from the electron-hole chan-
nel. We then come to a new representation

∆Σ(p) =
∞∑

n=1

n∑
i=1

1
N

∑
p1

Λ(i,n−i)
ppi

(z+, z−;q)∆G(pi)

(A.7)

where Λ
(n,i)
ppi

(z+, z−;q) is a sum of two-particle irreducible
diagrams with n internal one-electron lines of which i lines
carry energy z+ and n− i lines energy z−.

Last but very important step in the proof of iden-
tity (25) is an assumption that removing the difference
∆G from equation (A.7) and fixing the internal variable
pi = p′ does not change summability of the perturbation
expansion. If so, we can write

Λpp′(z+, z−;q) =
∞∑

n=1

n∑
i=1

Λ
(i,n−i)
pp′ (z+, z−;q). (A.8)

The equality holds if and only if the perturbation ex-
pansion in the random potential for the two-particle ir-
reducible vertex Λpp′(z+, z−;q) converges point-wise for
the chosen values of independent variables z+, z−,p,p′,q.
This is a rather severe restriction on applicability of the
Ward identity (25). It says that the Ward identity is valid
only in cases where no selective rules for sums of two-
particle irreducible diagrams apply, i.e., all classes of di-
agrams are equally important. This happens when the ir-
reducible two-particle vertex is regular (bounded). How-
ever, physically the most interesting situation occurs when
due to backscatterings a Cooper pole appears in the irre-
ducible vertex Λ. Thanks to this pole only a class of rele-
vant (crossed electron-hole) diagrams determines the low-
energy behavior of the two-particle vertex. In the asymp-
totic region of the Cooper pole in the electron-hole irre-
ducible vertex, the Ward identity (25) cannot be proved.
In fact it gets violated whenever we take into account a
selected series of diagrams dictated by causality of the
approximation or leading to a divergence and we have to
consider a nonperturbative solution for the two-particle ir-
reducible vertex. Each selected (relevant) diagram of order
n from the formal expansion of the singular two-particle
vertex generates in the Ward identity n − 1 irrelevant
diagrams to complete the sum from the right-hand side
of equation (A.6) so that the self-energy difference can
be represented via the vertex Λ. The irrelevant diagrams
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are neglected in approximations with selected dominant
classes of diagrams violating then identity (25). Hence,
summability of the perturbation expansion for the two-
particle irreducible vertex is an additive assumption in the
proof of the Ward identity (25). There is no nonpertur-
bative proof of this identity except for the homogeneous
case, q = 0, where it is a consequence of the Velický-Ward
identity (11).
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